专业详情
Energy, the environment, and health care are key challenges facing humanity in the twenty-first century. Chemical engineering is a discipline well placed to confront these challenges. Chemical engineering is rooted in the basic sciences of mathematics, chemistry, physics, and biology; a traditional engineering science core of thermodynamics, transport phenomena, and chemical kinetics; a rigorous design component; and an expanding focus on emerging topics in materials, nanotechnology, and life sciences. The discipline has grown from its petrochemical origins to become central to state-of-the-art technologies in microelectronics, alternative energy, biomedicine, and pharmaceutics.
The Chemical Engineering program, with two degree programs (see below), is principally focused on basic and engineering sciences and on problem solving. Additional emphasis is on communication, analysis of experiments, and chemical process design. A special feature of the program is the accessibility of laboratory research—most chemical engineering majors participate in faculty-led research projects, often resulting in publication and/or presentation at national meetings.
Chemical engineering graduates find a wide range of professional opportunities in academia, industry, government, business, and the nonprofit sector. Many majors go on to graduate programs in chemical, biomedical, or environmental engineering, or to medical, law, or business schools.
Upon graduation, Yale’s Chemical Engineering students are expected to have achieved “Student Outcomes” as defined by ABET (www.abet.org) and the program. The Chemical Engineering major produces graduates who demonstrate: (1) an ability to identify, formulate, and solve complex engineering problems by applying principles of engineering, science, and mathematics; (2) an ability to apply engineering design to produce solutions that meet specified needs with consideration of public health, safety, and welfare, as well as global, cultural, social, environmental, and economic factors; (3) an ability to communicate effectively with a range of audiences; (4) an ability to recognize ethical and professional responsibilities in engineering situations and to make informed judgments, which must consider the impact of engineering solutions in global, economic, environmental, and societal contexts; (5) an ability to function effectively on a team whose members together provide leadership, create a collaborative and inclusive environment, establish goals, plan tasks, and meet objectives; (6) an ability to develop and conduct appropriate experimentation, analyze and interpret data, and use engineering judgment to draw conclusions; and (7) an ability to acquire and apply new knowledge as needed, using appropriate learning strategies.
Yale and ABET also look ahead, several years beyond graduation. Program educational objectives provide the expectations for graduates early in their career. The Chemical Engineering objectives are to produce graduates who: (1) have mastery of the basic principles of science and modern chemical engineering practice and are able to adapt and creatively apply them to solve new problems in a broad range of fields; (2) become ethical professionals who advance chemical engineering practice and knowledge in multiple fields and recognize the local and global impacts of their work on humans and the environment; (3) are able to work well with people from diverse backgrounds and are committed to the advancement of women and under-represented groups in engineering; (4) have a strong educational foundation enabling them to study in graduate and professional schools as well as become leaders in STEM or non-STEM career paths; and (5) are committed to, and engage in, lifelong learning throughout their careers.
Prerequisites
Students considering a Chemical Engineering major are encouraged to take two terms of chemistry and mathematics during the first year, and to contact the director of undergraduate studies (DUS).
Students in both degree programs (see below) take the following prerequisite courses: MATH 112, 115, and ENAS 151 or MATH 120; CHEM 161 and 165 or CHEM 163 and 167; CHEM 134L and 136L; PHYS 180, 181 or PHYS 200, 201 or PHYS 260. Students with advanced high school preparation may reduce the number of prerequisites by placing out of certain courses.
Requirements of the Major
Two degree programs are offered: a B.S. in Chemical Engineering accredited by the Engineering Accreditation Commission of ABET, Inc., and a B.S. in Engineering Sciences (Chemical). All students majoring in Chemical Engineering and Engineering Sciences (Chemical) must follow the requirements listed below as approved by the program’s faculty.
B.S. degree program in Chemical Engineering The curriculum for the ABET-accredited B.S. degree in Chemical Engineering requires twenty courses, totaling nineteen credits, including the senior requirement, CENG 416, and the following courses beyond the prerequisites:
- Computing: ENAS 130 or CPSC 100 or CPSC 112 or CPSC 200
- Mathematics: ENAS 194
- Chemistry: CHEM 174 and 175 or CHEM 220 and 221; CHEM 222L and 223L; CHEM 332 and 333
- Engineering science: Three term courses chosen from engineering electives
- Chemical engineering: CENG 150 or CENG 210; CENG 300, 301, 314 (or MENG 361), CENG 315, 411, 412L, 480
B.S. degree program in Engineering Sciences (Chemical) The B.S. degree in Engineering Sciences (Chemical) requires twelve term courses, including the senior requirement, CENG 416 or CENG 490, and the following courses beyond the prerequisites, chosen in consultation with the DUS:
- Computing: ENAS 130 or CPSC 100 or CPSC 112 or CPSC 200
- Mathematics: ENAS 194
- Chemistry: 3 advanced chemistry courses: option 1: CHEM 174 and 175 or CHEM 220 and 221; and CHEM 332; or option 2: CHEM 174 or 220; CHEM 332 and 333
- Chemical engineering: CENG 150 or CENG 210; CENG 300, 301, 314 (or MENG 361), CENG 315, 411
Senior Requirement
B.S. degree program in Chemical Engineering In their senior year, students must complete a senior research project in CENG 416.
B.S. degree program in Engineering Sciences (Chemical) In their senior year, students must complete a senior research project in CENG 416 or CENG 490.