专业详情
Mathematics and computer science are closely related fields. Problems in computer science are often formalized and solved with mathematical methods. It is likely that many important problems currently facing computer scientists will be solved by researchers skilled in algebra, analysis, combinatorics, logic and/or probability theory, as well as computer science.
The purpose of this program is to allow students to study a combination of these mathematical areas and potential areas of application in computer science. Required subjects include linear algebra (18.06, 18.061, or 18.700) because it is so broadly used, and discrete mathematics (18.062[J] or 18.200) to give experience with proofs and the necessary tools for analyzing algorithms. The required subjects covering complexity (18.404 Theory of Computation or 18.400[J] Computability and Complexity Theory) and algorithms (18.410[J] Design and Analysis of Algorithms) provide an introduction to the most theoretical aspects of computer science. We also require exposure to other areas of computer science (6.031, 6.033, 6.034, or 6.036) where mathematical issues may also arise. More details can be found on the degree chart.
Some flexibility is allowed in this program. In particular, students may substitute the more advanced subject 18.701 Algebra I for 18.06 Linear Algebra, and, if they already have strong theorem-proving skills, may substitute 18.211 Combinatorial Analysis or 18.212 Algebraic Combinatorics for 18.062[J] Mathematics for Computer Science or 18.200 Principles of Discrete Applied Mathematics.