专业详情
General Mathematics Option
In addition to the General Institute Requirements, the requirements consist of Differential Equations, plus eight additional 12-unit subjects in Course 18 of essentially different content, including at least six advanced subjects (first decimal digit one or higher) that are distributed over at least three distinct areas (at least three distinct first decimal digits). One of these eight subjects must be Linear Algebra. This leaves available 84 units of unrestricted electives. The requirements are flexible in order to accommodate students who pursue programs that combine mathematics with a related field (such as physics, economics, or management) as well as students who are interested in both pure and applied mathematics. More details can be found on the degree chart.
Applied Mathematics Option
Applied mathematics focuses on the mathematical concepts and techniques applied in science, engineering, and computer science. Particular attention is given to the following principles and their mathematical formulations: propagation, equilibrium, stability, optimization, computation, statistics, and random processes.
Sophomores interested in applied mathematics typically enroll in 18.200 Principles of Discrete Applied Mathematics and 18.300 Principles of Continuum Applied Mathematics. Subject 18.200 is devoted to the discrete aspects of applied mathematics and may be taken concurrently with 18.03 Differential Equations. Subject 18.300, offered in the spring term, is devoted to continuous aspects and makes considerable use of differential equations.
The subjects in Group I of the program correspond roughly to those areas of applied mathematics that make heavy use of discrete mathematics, while Group II emphasizes those subjects that deal mainly with continuous processes. Some subjects, such as probability or numerical analysis, have both discrete and continuous aspects.
Students planning to go on to graduate work in applied mathematics should also take some basic subjects in analysis and algebra.
More detail on the Applied Mathematics option can be found on the degree chart.
Pure Mathematics Option
Pure (or “theoretical”) mathematics is the study of the basic concepts and structure of mathematics. Its goal is to arrive at a deeper understanding and an expanded knowledge of mathematics itself.
Traditionally, pure mathematics has been classified into three general fields: analysis, which deals with continuous aspects of mathematics; algebra, which deals with discrete aspects; and geometry. The undergraduate program is designed so that students become familiar with each of these areas. Students also may wish to explore other topics such as logic, number theory, complex analysis, and subjects within applied mathematics.
The subjects 18.701 Algebra I and 18.901 Introduction to Topology are more advanced and should not be elected until a student has had experience with proofs, as in Real Analysis (18.100A, 18.100B, 18.100P or 18.100Q) or 18.700 Linear Algebra.
For more details, see the degree chart.